Text extraction from scene images by character appearance and structure modeling

نویسندگان

  • Chucai Yi
  • Yingli Tian
چکیده

In this paper, we propose a novel algorithm to detect text information from natural scene images. Scene text classification and detection are still open research topics. Our proposed algorithm is able to model both character appearance and structure to generate representative and discriminative text descriptors. The contributions of this paper include three aspects: 1) a new character appearance model by a structure correlation algorithm which extracts discriminative appearance features from detected interest points of character samples; 2) a new text descriptor based on structons and correlatons, which model character structure by structure differences among character samples and structure component co-occurrence; and 3) a new text region localization method by combining color decomposition, character contour refinement, and string line alignment to localize character candidates and refine detected text regions. We perform three groups of experiments to evaluate the effectiveness of our proposed algorithm, including text classification, text detection, and character identification. The evaluation results on benchmark datasets demonstrate that our algorithm achieves the state-of-the-art performance on scene text classification and detection, and significantly outperforms the existing algorithms for character identification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Detection from Natural Image using MSER and BOW

Text characters and strings in natural scene can provide valuable information for many applications. Extracting text directly from natural scene images or videos is a challenging task because of diverse text patterns and variant background interferences. This project proposes a method of scene text recognition from detected text regions. In text detection, our previously proposed algorithms are...

متن کامل

Character Energy and Link Energy-Based Text Extraction in Scene Images

Extracting text objects from scene images is a challenging problem. In this paper, by investigating the properties of single characters and text objects, we propose a new text extraction approach for scene images. First, character energy is computed based on the similarity of stroke edges to detect candidate character regions, then link energy is calculated based on the spatial relationship and...

متن کامل

Text Extraction from Natural Scene Images and Conversion to Audio in Smart Phone Applications

Extracting text character from natural scene images is a challenging problem due to differences in text style, font, size, orientation, alignment and complex background. The text data present in images and video contain certain useful information for content-based information indexing and retrieval, sign translation and intelligent driving assistance. In scene text extraction, adjacent characte...

متن کامل

Memory Matters: Convolutional Recurrent Neural Network for Scene Text Recognition

Text recognition in natural scene is a challenging problem due to the many factors affecting text appearance. In this paper, we presents a method that directly transcribes scene text images to text without needing of sophisticated character segmentation. We leverage recent advances of deep neural networks to model the appearance of scene text images with temporal dynamics. Specifically, we inte...

متن کامل

Text Localization and Character Extraction in Natural Scene Images using Contourlet Transform and SVM Classifier

The objective of this study is to propose a new method for text region localization and character extraction in natural scene images with complex background. In this paper, a hybrid methodology is suggested which extracts multilingual text from natural scene image with cluttered backgrounds. The proposed approach involves four steps. First, potential text regions in an image are extracted based...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer vision and image understanding : CVIU

دوره 117 2  شماره 

صفحات  -

تاریخ انتشار 2013